Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)
NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.
NB: All your data is kept safe from the public.
Introduction
The purpose of this paper is to analyze and discuss the impact of mercury poisoning on the occupational health of workers and its toxicology. As a result, the paper first elaborates the scientific details of the nature and effects of mercury, outlines the historical background of the problem in the workplace, identifies the sources of the problem, and assesses the gravity of the situation using a case study to see how mercury poisoning affects people at work. Also, this research examines the current status of mercury poisoning in workplaces, evaluates the impact of this toxic metal on the biosphere, conducts a succinct data analysis, endorses plans for the future along with proper suggestions, and draws a pertinent conclusion. The research primarily focuses on occupational health and attempts to identify and address the dangers associated with the physical exposure to mercury in some specific workplaces, while evaluating the possible solutions to the problem through the maintenance of a protected and healthy working atmosphere.
Scientific Details of the Nature and Effects of Mercury
Mercury, a heavy metal that is liquid in room temperature, is toxic in all its available forms – according to Olson (2016), even the slightest contamination from this element can cause gastrointestinal complications, neurological disorders, and fatal bilateral kidney malfunctioning. Olson (2016) further suggested that humans can get in touch with the metal in various ways, but the most common modes include breathing its vapor, absorbing it through the skin, or swallowing or infusing it by some means. The metal is available in nature as elemental mercury, inorganic salts, and some organic compounds; however, methyl mercury is frequently suggested to have the most dangerous impact on human health in the long run, as its absorption into the bloodstream can be fatal. Mercury is one of the constituent metals of the planet and is hardly found in nature in its elemental state; as a result, it appears as compounds or bivalent atoms, although the pure metal is conventionally used in manufacturing industries (for example, in certain types of electrical applications, fluorescent lamps, thermometers, barometers, and sphygmomanometers), exposing the workers to its toxicity.
Even more dangerously, at normal temperatures, unwrapped mercury usually evaporates into extremely toxic odorless vapors causing grievous harm to the respiratory tract – as the temperature continues to increase; higher amounts of vapors are discharged, and this inflicts incurable sicknesses over the factory workers. Mercury is extracted from the ores of mercury sulfide, and traditionally, this is the key source for the commercial extraction of the metal through the treatment of the compound above 540º Celsius – consequently, laborers are exposed to pollution in two stages, firstly, by direct contact during extraction, and secondly, by inhalation of the metal during vaporization. World Health Organization (2017) reported that depending on the nature of the source, mercury poisoning could lead to a wide range of health issues, starting from metal disturbances to physical mutations. Workers exposed to the metal for longer-term can suffer from irreversible disorders. The following table briefly shows the health impact of various forms of metal:
Table 1: The health impact of various forms of mercury. Source: Generated from the World Health Organization (2017).
Historical Background and Sources of the Problem
Spiegel (2009) noted that historically mercury was used in gold mining and extraction of some other forms of metals, which increased the occupational health risks of the workers. However, there existed occupations in which poor people were compelled to use mercury as a catalyst in the production of other commercial items. Traditionally, workers who were directly engaged in the mining of mercury from its ore (mercury sulfide ores), or processed the compound by heating it to obtain pure elemental mercury, remained exposed to the toxicity throughout the day not just by physical contact, but also by inhalation of the vapor. Old-fashioned industries that dealt with the making of electrical switches, fluorescent lights, thermometers, barometers, or sphygmomanometers also required workers to come into touch with the toxicity since there were no environmental, employment, or health and safety regulations to address the issue in the past. Lack of scientific evidence and knowledge of the direct causal link between mercury and physical illness was also an unfavorable factor. According to Spiegel (2009), historically, poverty-stricken laborers in above fifty nations extracted gold with the assistance of mercury without any precautionary measures, and only recently, the United Nations has come forward with the roadmap for handling the issues of occupational health and environmental justice.
Case Study
In the 1950s, a chemical company located near Minamata Bay in Japan utilized mercury in making acetaldehyde, while the improper handling of methyl mercury without sufficient precautionary measures caused mental disturbances (later termed as Minamata disease) not just to the workers of the factory, but also to the local people of the entire vicinity. The poisoning spread rather quickly in the area, affecting the food chain, and investigations revealed that more than 2,200 adults were suffering from Minamata disease, whilst children started to show symptoms of an extremely agonizing syndrome similar to cerebral palsy, and pregnant women who were exposed to the pollution had newborns with poor brain development. Perhaps one of the most notorious cases of occupational toxicity from mercury poisoning is the Kodaikanal thermometer factory incident, where Unilever, the renowned global giant in consumer products, was held liable for inflicting injury on the workers during the manufacturing procedure due to poor work environment and unplanned waste disposal behind the factory. Kodaikanal tragedy remains to be one of the worst events of mercury pollution in the workplace, and the case has been elaborated comprehensibly in the table below:
Table 2: Kodaikanal case study. Source: Generated from Pereira (2016).
Current Status
Spiegel (2009) stated that in recent years, the developed countries have formulated laws and regulations regarding employees’ health and safety rights, protected workplace environment, fairness in employment terms, and guidelines for factories and industries regarding precautionary measures and safe limits of toxic materials in the atmosphere. Presently, the United Nations has put forward numerous agendas to ensure the occupational health of workers to assure their basic human rights and ascertain that employers do not exploit them by unfairly forcing them to perform hazardous jobs. The UN has also drafted many soft laws and course of action for the member states requiring them to ensure surveillance over the local industries and to create domestic laws to oversee the matter. Regional alliances like the European Union came up with strong rules imposing a regulatory burden over the member states and multinational corporations to comply with the occupational health and safety measures and public health policies.
At present, there are many technical analyses and well-funded researches regarding the ecological and health risks related to heavy metals like mercury and improper labor practices that address the necessity for punitive public policies to meet the requirements of the susceptible community and propose environmental justice models to broaden the traditionally restricted focus on poisonous working conditions. However, even after the introduction of so many legal sanctions, state authorities are failing to oversee the smaller industries or factories located in the rural or remote areas.
Spiegel (2009) suggested that the underdeveloped gold extraction industries in rural areas of Tanzania, for example, attracts poverty-stricken workers for whom mining is the mere source of income; therefore, irrespective of the fact that this industry offers the globe’s most alarming source of mercury contamination, there is nothing much the workers can do. The author further added that around a hundred million workers rely on these extraction industries to earn their living, whereas about thirteen to fifteen million miners globally generate approximately eight hundred to one thousand tons of mercury annually; consequently, it cannot be argued that the situation has significantly improved due to the regulatory policies in the recent years.
The Impact on Biosphere
Notably, mercury can have an irreparable impact on the biosphere, and the most crucial feature of the effect is in the capacity of the metal to accumulate in living beings and to move around the food chain; moreover, the bio-magnification of methyl mercury has the most extensive consequences over the animal kingdom. Even though each form of the metal can gather inside the bodies of the animals to some extent, methyl mercury is easily broken down than any other forms; in fact, almost hundred percent of the metal bio-accumulating in predator fishes consist of methyl mercury because fishes process this chemical quite quickly and vigorously. It is suggested that birds and mammals that consume fish possess greater methyl mercury content within themselves as compared to other creatures in the aquatic ecology, whereas predators that feed on the birds or mammals are also found to be sufferers since traces of the chemical has been detected in eagles, bears, and some rare tiger species.
Mercury assists methylation of bacteria, so when methyl mercury-carrying bacteria freely travels along the food chain or excrete the chemical in the pond or lakes, the pollution further aggravates and an increasing number of ecosystems are endangered. Mercury diminishes the essential microbiological activity in the soil and the Arctic zone is the most vulnerable location due to the long haul transportation of the metal, although the adverse effects are not limited to that area only and the wildlife is seriously threatened in the US as well.
Data Analysis
It is essential to evaluate the data on the quantity of mercury released by each industry to comprehend the most vulnerable workplace. US Environmental Protection Agency (2017) suggested that the data illustrating the annual emission levels of the metal is quite frightening since worldwide, around five to eight thousand metric tons of mercury are produced each year. According to these statistics, the biggest emitter of the pollutant is the gold mining industry, releasing about thirty-seven percent of mercury each year, whereas around twenty-four percent of the metal is released by the coal combustion industry, as demonstrated in the figure below:
Suggestions and Plans for the Future
To significantly reduce the use of mercury in the industries, and make sure that strict measures for occupational safety are ensured in the factories where treatment with mercury is unavoidable, certain corporations and state authorities have undertaken several strategic plans for the future. Also, experts have suggested several possible solutions to shrink the health hazards caused by the metal during work. While most of the action plans focus on imposing regulatory and managerial burdens upon the employers themselves, certain policies require actions from the other stakeholders as well. Some recommendations and futuristic plans to reduce or eliminate the impact of mercury exposure amongst workers are outlined below:
Table 3: Recommendations and futuristic plans. Source: Self-generated.
Conclusion
Exposure to mercury at occupation can cause irreversible and deadly physical and mental illnesses to workers in the long run. However, historically the trend amongst employers was to ignore precautionary measures and to focus rather on profit generation. Along with scientific advancement, people turned out to be more conscious and state authorities and the United Nations updated their laws to include occupational health and safety measures as the central focus. Still in remote areas, appropriate compliance to these regulations cannot be ensured. As a result, the government, corporate organizations, employees, local communities, and other stakeholders should jointly undertake some futuristic strategies to uphold occupational safety measures in all spheres of production.
Reference List
Olson, D. (2016). Mercury Toxicity. Web.
Pereira, A. (2016). Kodaikanal mercury poisoning: HUL settles with former workers, but there’s much left to do. Web.
Spiegel, S. (2009). Occupational health, mercury exposure, and environmental justice: learning from experiences in Tanzania. American Journal of Public Health, 99(3), 550-558.
US Environmental Protection Agency. (2017). Mercury emissions: the global context. Web.
World Health Organization. (2017).Mercury and health. Web.
Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)
NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.
NB: All your data is kept safe from the public.