KB entails a sentence α (KB |= α) if and only if, in every model KB is true, α is true as well. M (KB) is a subset of M(α)

Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)

NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.

NB: All your data is kept safe from the public.

Click Here To Order Now!

KB entails a sentence α (KB |= α) if and only if, in every model KB is true, α is true as well. M (KB) is a subset of M(α)

Assignment due Sunday, March 17, 2024 by 11:00pm
Answer the following questions. You have to upload a PDF file as the primary resource. You can upload any additional file as a secondary resource. Please note that you need to provide clear and detailed explanations for all the solutions that you provide.
Answer the following questions. Upload your answers in a pdf file.
Question 1
KB entails a sentence α (KB |= α) if and only if, in every model KB is true, α is true as well. M (KB) is a subset of M(α). One way to implement the inference is to enumerate all the models and check that α is true in every model that KB is true.
Assume a simplified version of the problem with breezes and pits. Squares next to pits are breezy, and breezy squares are next to squares with pits.
The agent did not detect a breeze at square [1,1] (column, row). The agent detected a Breeze in [2,1]. Thus, your knowledge base is KB : (¬ B1,1) ∧ (B2,1), where Bx,y is true if there is a breeze in [x,y].
Below you can see all possible models of adjacent pits: A pit is represented as a black cell.
1.1. Surround with a line the possible worlds above that are models of KB
1.2. Consider the sentence α1 = “Square [1,2] does not have a pit.” Surround with a line the possible worlds below that are models of α1.
1.3. Does KB |= α1? Explain your answer
1.4. Consider the sentence α2 = “Square [2,2] does not have a pit.” Surround with a line the possible worlds below that are models of α2.
Question 2:
Assume that you are given the following configuration. Compute the probability P3,1. Each square other than [1,1] contains a pit with a probability of 0.3.
Hint: Use section 12.7 for a similar example.
2.1 What is the evidence?
2.2. Write the formula for the full joint distribution. How many entries are there?
2.2 Use conditional independence to simplify the summation.
Question 3:
Given the network below, calculate marginal and conditional probabilities P (¬p3), P(p2|¬p3), P(p1|p2, ¬p3) a P(p1|¬p3, p4). Apply inference by enumeration. P(p1)=0.4 P(p2/p1)=0.8, P(p3/p2)=0.2 P(p3/¬p2)=0.3, P(p4/p2)=0.8, P(p4/¬p2)=0.5. Optional: Can you consider the case of using variable elimination?
Assignment Information
Weight:20%
Learning Outcomes Added
LO1_FundamentalsAI: Identify key concepts relating to various AI techniques.
LO2_ReasoningAI: Apply logic, probabilistic reasoning, and knowledge representation strategies in solving AI problems.
Above is the assignment requirements, please note that i have completed the assignment and the task i need you to complete is review everything and fix any mistakes.

Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)

NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.

NB: All your data is kept safe from the public.

Click Here To Order Now!

Place this order or similar order and get an amazing discount. USE Discount code “GET20” for 20% discount