यहां “सभी बजटों के लिए निःशुल्क कंप्यूटर पाठ्यक्रम” विषय पर कुछ नोट्स दिए गए हैं

यहां “सभी बजटों के लिए निःशुल्क कंप्यूटर पाठ्यक्रम” विषय पर कुछ नोट्स दिए गए हैं

यहां “सभी बजटों के लिए निःशुल्क कंप्यूटर पाठ्यक्रम” विषय पर कुछ नोट्स दिए गए हैं:
किफायती ऑनलाइन शैक्षणिक प्लेटफॉर्म
ऐसे कई ऑनलाइन प्लेटफ़ॉर्म हैं जो मुफ़्त या कम लागत वाले कंप्यूटर कोर्स ऑफ़र करते हैं। ये उन लोगों के लिए एक बढ़िया विकल्प हो सकते हैं जो नए तकनीकी कौशल सीखना चाहते हैं या अपने मौजूदा कौशल में सुधार करना चाहते हैं। कुछ लोकप्रिय विकल्पों में शामिल हैं:
कोडकैडेमी: वेब विकास, डेटा विज्ञान और कंप्यूटर विज्ञान जैसे विषयों पर विभिन्न प्रकार के निःशुल्क और सशुल्क पाठ्यक्रम प्रदान करता है।
कोर्सेरा: दुनिया भर के विश्वविद्यालयों और कंपनियों के पाठ्यक्रमों तक पहुँच प्रदान करता है। कई पाठ्यक्रमों का ऑडिट निःशुल्क है, हालाँकि आपको अतिरिक्त सामग्री तक पहुँचने या प्रमाणपत्र प्राप्त करने के लिए शुल्क का भुगतान करना पड़ सकता है।
edX: हार्वर्ड और एमआईटी द्वारा स्थापित एक गैर-लाभकारी मंच, edX कंप्यूटर विज्ञान सहित विभिन्न विषयों पर मुफ्त और सशुल्क पाठ्यक्रमों की एक विस्तृत श्रृंखला प्रदान करता है।
उदासिटी: कृत्रिम बुद्धिमत्ता, क्लाउड कंप्यूटिंग और डेटा विज्ञान जैसे विषयों पर निःशुल्क और सशुल्क पाठ्यक्रमों का मिश्रण प्रदान करता है।
खान अकादमी: एक गैर-लाभकारी संगठन जो कंप्यूटर प्रोग्रामिंग और कंप्यूटिंग सहित विभिन्न विषयों पर मुफ्त ऑनलाइन पाठ्यक्रम और ट्यूटोरियल प्रदान करता है।
कॉलेज विद्या: पाठ्यक्रमों की तुलना और परामर्श
कॉलेज विद्या एक ऐसा मंच है जो छात्रों को उनकी ज़रूरतों के हिसाब से सही कंप्यूटर कोर्स की तुलना करने और चुनने में मदद करता है। यह मंच कई तरह की सेवाएँ प्रदान करता है, जिनमें शामिल हैं:
पाठ्यक्रम तुलना: कॉलेज विद्या छात्रों को लागत, पाठ्यक्रम और अवधि जैसे कारकों के आधार पर विभिन्न कंप्यूटर पाठ्यक्रमों की तुलना करने की अनुमति देता है।
परामर्श: यह मंच विशेषज्ञों के साथ एक-पर-एक परामर्श सत्र प्रदान करता है जो छात्रों को सही पाठ्यक्रम चुनने और अध्ययन योजना बनाने में मदद कर सकते हैं।
छात्रवृत्ति और वित्तीय सहायता: कॉलेज विद्या कंप्यूटर पाठ्यक्रमों के लिए छात्रवृत्ति और वित्तीय सहायता विकल्पों पर जानकारी प्रदान करता है।
कुल मिलाकर, कॉलेज विद्या उन छात्रों के लिए एक उपयोगी संसाधन हो सकता है जो यह तय करने की कोशिश कर रहे हैं कि उन्हें कौन सा कंप्यूटर कोर्स करना चाहिए और अपने विकल्पों पर मार्गदर्शन चाहते हैं।
बहुविकल्पीय प्रश्नोत्तरी उत्पन्न करें
समान सामग्री के लिए वेब पर खोजें
अक्सर पूछे जाने वाले प्रश्न उत्पन्न करें
इस सारांश को पुनः बनाएं
छवि 0
चित्र 1
चित्र 2
चित्र 3
चित्र 4
चित्र 5
चित्र 6
चित्र 7
चित्र 8

1.Review the Duke Text (How to decide). Consider the graphics on pages 9 and 10.

1.Review the Duke Text (How to decide). Consider the graphics on pages 9 and 10.

1.Review the Duke Text (How to decide). Consider the graphics on pages 9 and 10. What tools and processes can we employ to maximize the number of good outcomes? (Pictures below)
2.Review the decision making that went into the Fyre festival. You can review the events here:
https://www.refinery29.com/en-us/2019/01/221816/fy…
You can also watch a documentary about this on Netflix. Specifically discuss how quantitative decision tools could have been used to ensure a better outcome, the ethics of how the event was run, and what leadership philosophy should have been used in setting up this event.

The Traveling Salesman Problem Given a collection of cities, along with pairwise

The Traveling Salesman Problem
Given a collection of cities, along with pairwise

The Traveling Salesman Problem
Given a collection of cities, along with pairwise distances between the cities, what is the
shortest route that visits each city exactly once and returns the the starting city? This
question is commonly referred to as the traveling salesman problem (TSP). The traveling
salesman problem can be reformulated as finding a Hamiltonian cycle of least cost in a
weighted graph — a Hamiltonian cycle is a cycle that includes every vertex in the graph.
This assignment will focus on a brute-force solution to the traveling salesman problem.
Program Specifications
You will write a C++ program to implement a brute-force, permutation-based solution for
the traveling salesman problem. Your program will take in a single command line input
specifying a file to read. The input file will contain one or more lines, each of which specifies
a directed edge the form “src dst wt” where src and dst are non-negative integers indicating
the source and destination vertices of the edge, and wt is the weight of the edge. I will
provide you with sample input files for testing, but it is your responsibility make sure that
your program behaves correctly on any valid input file. Your program will output the cost
of the minimum Hamiltonian cycle. See the end of this handout for example output.
You will need to implement your own adjacency matrix or adjacency list structure to store the
graph. Take care not to over engineer your data structure — you do not need to write a full
class to implement your graph data structure. I suggest that you rely on standard template
library containers for your implementation (see https://cplusplus.com/reference/stl/). For
instance
• std::vector > adj matrix;
• std::vector > adj list;
Regardless of the data structure you choose, do not hard-code limits on your data structure
size. Also, please note that variable-length arrays (VLAs) are not part of the C++ standard
and should not be used. For your solution, you make use the std::next permutation
function.
Submission and Grading
You must use skeleton3.cpp (see iLearn) as a starting point for your program, and complete
the TSP function; feel free to create any additional helper functions or include any additional
standard libraries that you need, but do not modify any other existing functions. Your
source code should be contained in a single file and should be named after your TTU email
address excluding the “@tntech.edu” (e.g., jagraves21.cpp). All submissions will be made
on iLearn — please do not zip or compress your files. Make sure to follow best coding
practices (proper naming conventions, useful comments, etc.). Your program should compile
without errors or warnings. Programs will be compiled using the following command:
g++ -Wall -pedantic -std=c++11 [source file]
Sample Output
The following lines contain sample input and expected output to your programs. Please note
that these examples are not exhaustive, and you should verify your programs with additional
test cases.
$ ./a.out graph1.txt
18
$ ./a.out graph2.txt
14
$ ./a.out graph3.txt
No Hamiltonian cycle exists.

Points to remember: Youcanassumethatyouhaveaccesstothefunction BINARYSEARCH(A[lo

Points to remember:
Youcanassumethatyouhaveaccesstothefunction BINARYSEARCH(A[lo

Points to remember:
Youcanassumethatyouhaveaccesstothefunction BINARYSEARCH(A[low high] key)
that searches for key in the subarray A[low high] and returns an index of key if key
is present and returns 1 if key is not present.
Quick summary: Brute force is a simple, straightforward, naive, and exhaustive
search-based approach. Decrease-and-conquer is a recursive algorithm design tech
nique where a function calls only one instance of itself on a smaller subproblem.
1. [10 points] Given a sorted array of numbers A[1 n], we would like to determine
a value x such that both x and (2x + 17) are in the array. If there is, print one
such value x, else, print that there is no such value.
(i) Design a On2 time, (1) extra space algorithm FINDX-NAIVE(A[1 n]) to
solve the problem.
(ii) Design a Onlogn time, (n) extra space algorithm FINDX-BETTER(A[1 n])
to solve the problem.
(iii) Design a O(n) time, (1) extra space algorithm FINDX-BEST(A[1 n]) to solve
the problem.
2. [10 points] Consider the algorithm called SIMPLESORT. Consider two example
arrays of size 5 and show the array contents with values of i and j (approximately
25 steps for each example). Does this simple algorithm sort an array of unique
elements? Does it sort an array even if there are duplicates? If the algorithm
does sort, why do you think it sorts? If the algorithm does not sort an array give
a counterexample and you will get 5 extra points as bonus points.
SIMPLESORT(A[1 n])
1. Input: Array to be sorted A[1 n]
2. Output: Sorted array in A[1 n]
3. for i 1tondo
for j 1tondo
4.
5.
6.
if A[i] < A[j] then SWAP(A[i]A[j]) 1 3. [10 points] Given an array of real numbers A[1 n], apair of indices (i j) is called an inversion if i < j and A[i] > A[j]. We want to count the total number of inver
sions in a given array.
(i) Design asimplenon-recursive algorithm COUNTINVERSIONS-NONRECURSIVE(A[1 n])
to solve the problem.
(ii) Design a simple recursive algorithm COUNTINVERSIONS-RECURSIVE(A[1 n])
to solve the problem.
4. [10 points] Given an array of real numbers A[1 n], we want to compute and
return the prefix sum array P[1 n] such that P[i] = A[1]+ A[2]+ A[3]+ +A[i].
(i) Design a O(n) non-recursive algorithm PREFIXSUM-NONRECURSIVE(A[1 n])
to solve the problem.
(ii) Design a O(n) recursive algorithm PREFIXSUM-RECURSIVE(A[1 n]) to solve
the problem.
5. [10 points] Given a string S[1 2n] containing just the characters ’(’ and ’)’, de
sign an algorithm ISVALIDSTRING(S[1 2n]) to determine if the input string is
valid. An input string is valid if the open brackets are closed in the proper order.
Example: (()) is valid; (())() is valid; )()) is invalid; ())) is invalid; ()(( is invalid.
(Hint: Use a stack to solve the problem.)
6. [10 points] Given two natural numbers a and b, we want to compute the greatest
common divisor (GCD) of a and b.
(i) Design a simple non-recursive algorithm GCD(ab) to solve the problem.
(ii) Design a simple recursive algorithm GCD(ab) to solve the problem.
7. [10 points] Apolynomial P(x) with asingle indeterminate x is written in the form:
n
P(x) =
aixi = anxn + an 1xn 1 + +a2x2 +a1x+a0
i=0
where ai for all i [0n] is a real constant. Assume that ai = A[i] for all i. We want
to compute the univariate polynomial P(x) at a specific value of x.
(i) Design a On2 algorithm EVALUATEPOLY(A[0 n] x) to solve the problem.
(ii) Design a Onlogn algorithm EVALUATEPOLY(A[0 n] x)tosolvetheproblem.
(Hint: Ideas from the slides are helpful)
(iii) Design a O(n) algorithm EVALUATEPOLY(A[0 n] x) to solve the problem.
(Hint: Use Horner’s method of representing the polynomial as follows.)
P(x) = a0 + x(a1 + x(a2 + x(a3 + + x(an 1 + xan) )))
8. [10 points] Given a sorted array A[1 n] and a value k, we want to return a pair
of distinct indices such that the sum of elements at those indices equals k. That
is, we want to return a pair of indices (i j), where 1 i < j n and A[i]+ A[j] = k. (i) Design a On2 algorithm PAIRSUM(A[1 n] k) to solve the problem. (ii) Design a Onlogn algorithm PAIRSUM(A[1 n] k) to solve the problem. 2 (iii) Design a O(n) algorithm PAIRSUM(A[1 n] k) to solve the problem. 9. [10 points] Given a sorted array A[1 n], we want to count the number of occur rences of value k in the array. (i) Design a O(n) algorithm COUNTFREQUENCY(A[1 n] k) to solve the problem. (ii) Design a O logn algorithm COUNTFREQUENCY(A[1 n] k) to solve the prob lem. (Hint: Modify binary search and use it.) 10. [10 points] Simulation problem. (i) Simulate a stack using queue(s). That is, show how to implement Push and Pop functions of stack using Enqueue and Dequeue methods of queue(s). (ii) Simulate a queue using stack(s). That is, show how to implement Enqueue and Dequeue functions of queue using Push and Pop methods of stack(s)

[50 points] Evaluate the complexity of the LOOOOOOOOOOP kernel using the notati

[50 points] Evaluate the complexity of the LOOOOOOOOOOP kernel using the
notati

[50 points] Evaluate the complexity of the LOOOOOOOOOOP kernel using the
notation. The many possible values for Istart, Iend, Iincrement, Jstart, Jend, and Jincrement
are given in the table.
LOOOOOOOOOOP(n)
1. for i Istart; i Iend; Iincrement do
2.
for j Jstart; j Jend; Jincrement do
3.
do nothing
Program
Istart
Iend
Iincrement
Jstart
Jend
Jincrement
1 2 n i i+2 2 n j j+2
2 2 n i i+2 2 n j j 2
3 2 n i i+2 2 n j j2
4 2 n i i 2 2 n j j+2
5 2 n i i 2 2 n j j 2
6 2 n i i 2 2 n j j2
7 2 n i i2 2 n j j+2
8 2 n i i2 2 n j j 2
9 2 n i i2 2 n j j2
10 2 n i i+2 2 i j j+2
11 2 n i i+2 2 i j j 2
12 2 n i i+2 2 i j j2
13 2 n i i 2 2 i j j+2
14 2 n i i 2 2 i j j 2
15 2 n i i 2 2 i j j2
16 2 n i i2 2 i j j+2
17 2 n i i2 2 i j j 2
18 2 n i i2 2 i j j2
19 2 n i i+2 2 i j i+j
20 2 n i i+2 2 i j i j
1
2. [10 points] Given an array A[1 n] where n 2containing integers from 1 to n 1
inclusive, exactly one of which is repeated, we need to find and return this integer
that is repeated.
(i) Design a On2 time algorithm FINDREPEATEDNUMBER-NAIVE(A[1 n]) to
solve the problem.
(ii) Design a O(n) time constant extra space algorithm FINDREPEATEDNUMBER
EFFICIENT(A[1 n]) to solve the problem.
3. [10 points] Given an array of integers A[1 n], we need to push all square num
bers in the array to the front of the array and the non-square numbers to the
end. Assume that you are given a function ISPERFECTSQUARE(k) that checks if
a given number k is a square number or not in O(1) time.
(i) Design a On2 time, O(1) extra space algorithm GROUPING-NAIVE(A[1 n]) to
solve the problem.
(ii) Design a (n) time, O(n) extra space algorithm GROUPING-BETTER(A[1 n])
to solve the problem.
(Surprisingly, there is a much better (n)time, (1)extraspacealgorithm GROUPING
BEST(A[1 n])tosolve the problem. You will learn about this beautiful algorithm
in the algorithms course.)
4. [10 points] Suppose prisoners numbered 123
n are standing in a circle in
the clockwise order. Starting from the first prisoner, every kth prisoner in the
clockwise direction is killed in every step. We would like to compute the jthperson
to be killed.
(i) Design a natural algorithm JOSEPHUSPROBLEM-ARRAY(nk j) using an array
to solve the problem.
(ii) Design a natural algorithm JOSEPHUSPROBLEM-CSLL(nk j)usingcircularly
singly linked list to solve the problem.
5. [10 points] Given an array of integers A[1 n], we want to maximize A[i] A[j]
such that i < j. Assume that you are given a function SORT(A[1 n]) that sorts the array in-place in nlogn time and (n) extra space. (i) Design a n2 time, (1)extraspacealgorithm MAXIMIZEPRODUCT-NAIVE(A[1 n]) to solve the problem. (ii) Design a nlogn time, (n)extraspacealgorithm MAXIMIZEPRODUCT-BETTER(A[1 n]) to solve the problem. (iii) Design a (n)time, (1)extraspacealgorithm MAXIMIZEPRODUCT-BEST(A[1 n]) to solve the problem. 6. [10 points] Given two circularly singly linked lists, design a quadratic time al gorithm to find if the two lists store the same sequence of elements but perhaps with different starting points.

Student Learning Goal: I’m working on a data analytics question and need support

Student
Learning Goal: I’m working on a data analytics question and need support

Student
Learning Goal: I’m working on a data analytics question and need support to help me learn.
Please complete the following 4 Dow questions from the attached pdf file reading under Dow Chemical Co.: big data in Manufacturing Page 1-15.
Require high quality work, be precise with answers.
Please reach out to me if you have any further question.
Thank You
Requirements: 4q

Customer Service Management System The FinTech company “Alpha” is proposing a ne

Customer Service Management System
The FinTech company “Alpha” is proposing a ne

Customer Service Management System
The FinTech company “Alpha” is proposing a new customer service management system. The system will handle customer requests for support. The customer initiates a support ticket by sending an email to the customer support department. Then, the system assigns a ticket number. The ticket will then be evaluated. Valid tickets will be resolved. Otherwise, a rejection notice will be sent to the customer detailing the reason for rejecting the support ticket.
The system should keep track of all the tickets, and a weekly report will be generated and sent to the Management. Some support tickets require the finance team to refund payments to the customers. In that case, a refund request will be sent to the finance team that either accept or reject the request as a refund request notice. If the refund request is accepted then a refund notice will be sent to the customer. The system should keep track of all the refund requests that will be part of the weekly report. Your answer must include a screenshot of the complete Context Diagram along with the link generated from the LucidChart
Please refer to slides 7 to 24

Using the Master’s theorem,determine the running time of Strassen’sAlgorithm and

Using the Master’s theorem,determine the running time of Strassen’sAlgorithm and

Using the Master’s theorem,determine the running time of Strassen’sAlgorithm and show that it is faster than the standard algorithm that runs in Θ(n3) time.
Don’t use ChatGPT!!!!