US GDP Model: Economic Analysis of Growth Determinants

Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)

NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.

NB: All your data is kept safe from the public.

Click Here To Order Now!

The objective of the current study is to develop a model that explains changes in the value of U.S. Gross Domestic Product (GDP) based on its constituents. The dataset for this study is prepared by extracting data from the website of the Bureau of Economic Analysis (BEA) (BEA, 2018). The variables included in this dataset include GDP, Exports, Imports, Investment, and Consumption Expenditure, which are continuous, ratio variables.

The data contains 88 entries from 1929 to 2016. All variables are measured in millions other than GDP, which is measured in billions. Therefore, the values of these variables are converted into billions. All missing values of 2017 are omitted from the dataset for all variables. The dependent variable is GDP, and other variables are independent.

The relationship between economic variables is determined by the multivariate regression model, which predicts changes in the value of the dependent variables affected by changes in the values of the independent variables (Epstein, 2011).

The multivariate regression model implemented in this study follows the given equation.

GDP = ß0 + ß1 * Export + ß2 * Import + ß3 * Investment + ß4 * Consumption Expenditure

The results of the regression model are provided in Table 1 given below.

Regression Statistics
Multiple R 0.999632551
R Square 0.999265237
Adjusted R Square 0.999229827
Standard Error 153.4548911
Observations 88
ANOVA
df SS MS F Significance F
Regression 4 2658111986 664527996.4 28219.66226 3.7427E-129
Residual 83 1954517.499 23548.4036
Total 87 2660066503
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -53.35928256 25.43638472 -2.097754187 0.038968489 -103.9512287 -2.767336394 -103.9512287 -2.767336394
Exports -0.096697899 0.237564725 -0.407038119 0.685027797 -0.569204581 0.375808784 -0.569204581 0.375808784
Imports 1.215720003 0.197853826 6.144536226 2.66432E-08 0.8221967 1.609243306 0.8221967 1.609243306
Investment 2.166228052 0.10412081 20.80494806 1.12299E-34 1.959135948 2.373320156 1.959135948 2.373320156
Consumption Expenditure 2.961403928 0.177924268 16.64418219 3.54998E-28 2.607519715 3.31528814 2.607519715 3.31528814

Table 1. Regression output.

The model summary indicates that the results of the regression model carried out in this study are reliable and valid as the value of R-squared is 0.9992, which means that the model explains 99.92% of the total variations observed in 88 data entries. The ANOVA table also indicates that only 0.08% of the variations remain unexplained. Therefore, the output of the model is considered as significant as the value of Sig. F is less than the error term of 5%. The regression equation obtained from the analysis is given below.

  • GDP = -53.35928256– 0.096697899 * Export + 1.215720003 * Import + 2.166228052 * Investment + 2.961403928* Consumption Expenditure (II)

The coefficient of constant has a small negative value, which represents the proportion of variations not explained by the model. There is a negative relationship between GDP and Export as the coefficient value is negative, and it is not a significant relationship because the p-value is greater than 5%. There is a positive relationship between GDP and Import as the coefficient value is positive, and it is a significant relationship because the p-value is less than 5%. There is a positive relationship between GDP and Investment as the coefficient value is positive, and it is a significant relationship because the p-value is less than 5%. There is a positive relationship between GDP and Consumption as the coefficient value is positive, and it is a significant relationship because the p-value is less than 5%.

The findings of this study are relevant and important to understand the components of GDP. The fiscal policymakers use this data to determine the economic trend and formulate their policies to instigate further growth (Gosling & Eisner, 2015). The current study fails to indicate a positive relationship between GDP and Exports. However, all other findings are consistent with the existing literature on the relationship between GDP and its components.

References

BEA. (2018). U.S. economic accounts. Web.

Epstein, R. J. (2011). An econometrics primer for lawyers. Antitrust Magazine, 25(3), pp. 29-33.

Gosling, J‎. J., & Eisner, M. A. (2015). Economics, politics, and American public policy. New York, NY: Routledge.

Do you need this or any other assignment done for you from scratch?
We have qualified writers to help you.
We assure you a quality paper that is 100% free from plagiarism and AI.
You can choose either format of your choice ( Apa, Mla, Havard, Chicago, or any other)

NB: We do not resell your papers. Upon ordering, we do an original paper exclusively for you.

NB: All your data is kept safe from the public.

Click Here To Order Now!